-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
↳ QTRS
↳ DependencyPairsProof
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
DIV2(s1(x), s1(y)) -> LT2(x, y)
-12(s1(x), s1(y)) -> -12(x, y)
DIV2(s1(x), s1(y)) -> -12(x, y)
LT2(s1(x), s1(y)) -> LT2(x, y)
DIV2(s1(x), s1(y)) -> IF3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
DIV2(s1(x), s1(y)) -> DIV2(-2(x, y), s1(y))
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
DIV2(s1(x), s1(y)) -> LT2(x, y)
-12(s1(x), s1(y)) -> -12(x, y)
DIV2(s1(x), s1(y)) -> -12(x, y)
LT2(s1(x), s1(y)) -> LT2(x, y)
DIV2(s1(x), s1(y)) -> IF3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
DIV2(s1(x), s1(y)) -> DIV2(-2(x, y), s1(y))
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LT2(s1(x), s1(y)) -> LT2(x, y)
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LT2(s1(x), s1(y)) -> LT2(x, y)
POL( LT2(x1, x2) ) = x2
POL( s1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
-12(s1(x), s1(y)) -> -12(x, y)
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(s1(x), s1(y)) -> -12(x, y)
POL( -12(x1, x2) ) = x2
POL( s1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
DIV2(s1(x), s1(y)) -> DIV2(-2(x, y), s1(y))
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV2(s1(x), s1(y)) -> DIV2(-2(x, y), s1(y))
POL( DIV2(x1, x2) ) = x1
POL( s1(x1) ) = x1 + 1
POL( -2(x1, x2) ) = x1
POL( 0 ) = 0
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
-2(x, 0) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
-2(x, 0) -> x
-2(0, s1(y)) -> 0
-2(s1(x), s1(y)) -> -2(x, y)
lt2(x, 0) -> false
lt2(0, s1(y)) -> true
lt2(s1(x), s1(y)) -> lt2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
div2(x, 0) -> 0
div2(0, y) -> 0
div2(s1(x), s1(y)) -> if3(lt2(x, y), 0, s1(div2(-2(x, y), s1(y))))